Heat Transfer Textbook is an introduction to heat and mass transfer oriented toward engineering students. The subjects covered include heat conduction, forced and natural convection, thermal radiation, boiling, condensation, heat exchangers, and mass transfer. The book includes worked examples and end-of-chapter exercises.
Exa 1.1 Viscosity in SI system . . . . . . . . . . . . . . . . .. 7Exa 1.2 Useful heat gain and thermal efficiency . . . . . . . .. 8Exa 1.3 Exit velocity and Temperature . . . . . . . . . . . . .9Exa 2.1 Heat flow rate . . . . . . . . . . . . . . . . . . . . . .11Exa 2.2 Heat flow rate . . . . . . . . . . . . . . . . . . . . .. 12Exa 2.3 Engineers decision . . . . . . . . . . . . . . . . . .. . 13Exa 2.4 Thickness of insulation . . . . . . . . . . . . . . .. . . 14Exa 2.5 Heat loss rate . . . . . . . . . . . . . . . . . .. . . . . 16Exa 2.6 Critical radius . . . . . . . . . . . . . . . .. . . . . . 17Exa 2.7 Maximum temperature . . . . . . . . . . . . .. . . . 18Exa 2.8 Steady state temperature . . . . . . . . . . . .. . . . 19Exa 2.9 Time taken by the rod to heat up . . . . . . . .. . . 20Exa 2.10.i Heat transfer coefficient at the centre . . . .. . . . . 21Exa 2.10.ii heat transfer coefficient at the surface .. . . . . . . . 23Exa 2.11.a Time taken by the centre of ball . . .. . . . . . . . . 24Exa 2.11.b time taken by the centre of ball toreach temperature . 25Exa 2.12 Temperature at the centre of thebrick . . . . . . . . . 26Exa 2.13.a Temperature at the copper fintip . . . . . . . . . . . 28Exa 2.13.b Temperature at the steel fintip . . . . . . . . . . . . . 29Exa 2.13.c Temperature at theteflon fin tip . . . . . . . . . . . . 30Exa 2.14 Heat loss rate .. . . . . . . . . . . . . . . . . . . . . . 31Exa 2.15 Decrease inthermal resistance . . . . . . . . . . . . . 32Exa 2.16 Overallheat transfer coefficient . . . . . . . . . . . . . 33Exa 3.1Monochromatic emissive power . . . . . . . . . . . . . 35Exa 3.2Heat flux . . . . . . . . . . . . . . . . . . . . . . . . . 36Exa3.3 Absorbed radiant flux and absorptivity and reflectivity 37Exa3.4.a Total intensity in normal direction . . . . . . . . . . .38Exa 3.4.b Ratio of radiant flux to the emissive power . . . . . .39
A TEXTBOOK ON HEAT TRANSFER SP SUKHATME PDF
Exa 3.5 Rate of incident radiation . . . . . . . . . . . . . . .. 40Exa 3.6 Shape factor F12 . . . . . . . . . . . . . . . . . . .. . 40Exa 3.7 Shape factor . . . . . . . . . . . . . . . . . . . .. . . 42Exa 3.8 Shape factor F12 . . . . . . . . . . . . . . . . .. . . . 43Exa 3.9 Shape factor . . . . . . . . . . . . . . . . . .. . . . . 44Exa 3.10 Net radiative heat transfer . . . . . . . . .. . . . . . 44Exa 3.11 steady state heat flux . . . . . . . . . . .. . . . . . . 45Exa 3.12 Rate of heat loss . . . . . . . . . . . .. . . . . . . . . 47Exa 3.13 Rate of nitrogen evaporation . . . . .. . . . . . . . . 47Exa 3.14 Rate of energy loss from satellite . .. . . . . . . . . . 48Exa 3.15 Net radiative heat transfer . . . .. . . . . . . . . . . 49Exa 4.1 Pressure drop in smooth pipe . . .. . . . . . . . . . . 52Exa 4.2.a Pressure drop and maximumvelocity calculation . . . 53Exa 4.2.b Pressure drop and maximumvelocity calculation . . . 54Exa 4.3 Pressure drop and power needed. . . . . . . . . . . . 56Exa 4.4 Thickness of velocity boundarylayer . . . . . . . . . . 57Exa 4.5 Drag coefficient and drag force. . . . . . . . . . . . . 58Exa 5.1.a Local heat transfercoefficient . . . . . . . . . . . . . . 60Exa 5.1.b Walltemperature . . . . . . . . . . . . . . . . . . . . 61Exa 5.2 ratioof thermal entrance length to entrance length . . 62Exa 5.3.iLength of tube . . . . . . . . . . . . . . . . . . . . . . 63Exa5.3.ii Exit water temperature . . . . . . . . . . . . . . . . .64Exa 5.4 Length of tube over which temperature rise occurs . .66Exa 5.5 Rate of heat transfer to the plate . . . . . . . . . . .. 68Exa 5.6.i Heat transfer rate . . . . . . . . . . . . . . . . .. . . 69Exa 5.6.ii Average wall tempeature . . . . . . . . . . . .. . . . 70Exa 5.7.i Pressure drop . . . . . . . . . . . . . . . . .. . . . . . 72Exa 5.7.ii Exit temperature of air . . . . . . . . .. . . . . . . . 73Exa 5.7.iii Heat transfer rate . . . . . . . . .. . . . . . . . . . . 75Exa 6.1 Average nusselt number . . . . . .. . . . . . . . . . . 78Exa 6.2 Reduce the equation . . . . . . . .. . . . . . . . . . . 80Exa 6.3 Time for cooling of plate . . . . .. . . . . . . . . . . 81Exa 6.4 True air temperature . . . . . . .. . . . . . . . . . . . 83Exa 6.5 Rate of heat flow by naturalconvection . . . . . . . . 85Exa 6.6 Average Heat transfercoeffficient . . . . . . . . . . . . 86Exa 7.1 Heat transfercoeffficient . . . . . . . . . . . . . . . . . 88Exa 7.2 Area ofheat exchanger . . . . . . . . . . . . . . . . . 89Exa 7.3 Meantemperature difference . . . . . . . . . . . . . . 90
Exa 7.4.a Area of heat exchanger . . . . . . . . . . . . . . . .. 91Exa 7.4.b Exit temperature of hot and cold streams . . . . . .. 92Exa 7.5 Exit Temperature . . . . . . . . . . . . . . . . . . .. 94Exa 8.1 Average Heat Transfer Coefficient . . . . . . . . . . .98Exa 8.2 Average heat transfer coefficient and film Reynoldsnum-
ber . . . . . . . . . . . . . . . . . . . . . . . . . . . .99Exa 8.3 Length of the tube . . . . . . . . . . . . . . . . . . .. 101Exa 8.4 boiling regions . . . . . . . . . . . . . . . . . . .. . . 103Exa 8.5 Initial heat transfer rate . . . . . . . . . . . .. . . . . 107Exa 9.1 Composition on molar basis . . . . . . . . . .. . . . . 109Exa 9.2 Diffusion coefficient of napthalene . . . . .. . . . . . 110Exa 9.3.a Rate of hydrogen diffusion . . . . . . . .. . . . . . . . 110Exa 9.3.b Rate of hydrogen diffusion . . . . . .. . . . . . . . . . 111Exa 9.4.a Rate of loss of ammonia . . . . .. . . . . . . . . . . . 112Exa 9.4.b Rate at which air enters thetank . . . . . . . . . . . . 113Exa 9.5 Rate of evaporation . . . .. . . . . . . . . . . . . . . 114Exa 9.6 Rate of evaporation . . .. . . . . . . . . . . . . . . . 115Exa 9.7.a Mass transfercoefficient Colburn anology . . . . . . . 116Exa 9.7.b Masstransfer coefficient Gnielinski equation . . . . . . 117Exa 9.7.cTo show mass flux of water vapour is small . . . . . . 119Exa 9.8Mass fraction . . . . . . . . . . . . . . . . . . . . . . . 120
Heat transfer mechanism, conduction heat transfer, Thermal conductivity, Convection heat transfer, Radiation heat transfer, laws of heat transfer Steady State Conduction: General heat conduction equation, Boundary and initial conditions, One-dimensional steady state conduction: the slab, the cylinder, the sphere, composite systems.
Continuity, Momentum and Energy equations, Hydrodynamic and Thermal boundary layer for a flat plate and pipe flow. Dimensionless groups for convection, relation between fluid friction and heat transfer, turbulent boundary layer heat transfer.
Introduction, Thermal radiation, Black body radiation, radiation laws, Radiation properties, Atmospheric and Solar radiation, The view factor, Radiation heat transfer from black surfaces, gray surfaces, diffuse surfaces, Radiation shields and the radiation effect.
2ff7e9595c
Comments